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PROGRESS REPORT ON

"OMIODELING AND STATISTICAL ANALYSIS OF BIOASSAY DATA"

Donald P. Gaver
Professor of Operations Research

Naval Postgraduate School
Monterey, CA 93943

1. BACXGROUND

The objectives of the above project were formulated in discussion with Mr.

Henry Gardner of U.S. Army Medical R&D Command, Ft. Detrick, M.D. The

project purpose and workscope was stated in a MIPR, effective Aug. 05, 1991, as

follows:

The Department of Operations Research, Naval Postgraduate School,
Monterey, California, shall conduct quantitative analysis of
environmental bioassay data to be provided by the U.S. Army Biomedical
Research and Development Laboratory (USABRDL). Individual cancer
bioassays shall be evaluated as well as all field test data. Meta-analytical
methods for assessing integrated biological assessment data shall also be
accomplished.

2. APPROACHES TAKEN, A.ND PROGRESS

a) Data Availability

Detailed data, concerning pathologist's assessments of physical changes in

(medaka) fish organs possibly resulting from toxin dosage, were sent to the

investigator on Dec. 19, 1991; they arrived about a week later. Summarized

data were available somewhat earlier, i.e. at the end of November. The form of

the data clearly influences the type of statistical analysis and modeling, so our

effort was directed towards formulating appropriate model types and



developing techniques for applying or fitting these to data. Actual applications,

i.e. fits and error assessments, plus comments about the apparent sensitivity of

results to the experimental/test designs (numbers of subjects/fish in groups,

intervals between sacrifice, etc.) have been made in Appendix C but require

extension. They can be enhanced during a subsequent contract phase, which

will be proposed.

b) Model Development

The objective of the project, to date, has been to focus on biological issues

believed to be important in converting toxin dosage to pre-cancerous and

cancerous cells, and to translate these into appropriate quantitative

mathematical terms. In particular, models that stem from the clonal

expansion mechanisms identified by Moolgavkar and co-workers, cf. sample

references (1979), (1983), have been studied, generalized (to account for possible

variability or susceptibility between individual fish), and adapted for fitting to

actual data. For an example see Appendix C, where numerical results,

including uncertainty analyses, are presented.

c) Some Details Concerning Model Ccnception

It appears to be widely believed that pre-cancerous conditions in an organ

(the liver) occur as a result of cell donal expansion, followed by a promotion

(to tumor) event. Specific models for this has been proposed and developed by

Moolgavkar and co-workers. More recent work is by C. J. Portier and co-

workers. References appear later.

The basic mechanism is treated as random or probabilistic: an initiating W

event, e.g., caused by contact with toxin, affects a cell within an organ in 0

accordance with a simple Poisson process with rate parameter X. That is, the
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chance of an uninitiated cell being initiated in time interval (t, t+h) is

approximately Xh. If a cell is initiated during exposure time it clones itself into

other cells at rate P3; the original cells and its clones die randomly at rate 8. All

cells in the organ perform thus independently, according to the model.

Depending upon the values of P and 8 (birth and death rates respectively) a

colony of initiated cells (pre-cancerous, presumably) either tends to grow

exponentially, or to die off to zero (also exponentially fast). The fates of

colonies characterized by the same values of birth rate and death rate may

actually be entirely different, as befits experience with variability characteristic

of the real biological world. This behavior is roughly analogous to that of the

flipping of the same coin: on one occasion 10 flips may well result in an excess

of 5 Heads (7 Heads and 3 Tails), analogous to more births (Heads) than deaths

(Tails); on another sequence of 10 flips with the same coin the result may be

exactly reversed (7 Tails, 3 Heads). Processes analogous to coin flipping or dice

rolling can describe much, but possibly not all interesting biological variability

pertinent to risk analysis. Other options are suggested later.

The values of P3 and 3 describe clone colony properties in a precise

probabilistic manner if the model is correct. It is only certainly approximate,

but may still provide a useful tool for quantifying risk of tumor formation.

The second step in the malignant cell development process is postulated to be

promotion. A model for this is that at rate g, i.e. with probability uh in time

(t, t+h) a promotion event occurs that affects one of the clone colony members

in proportion to the current size of the colony; such events are assumed to

occur in accordance with a Poisson process with rate proportional to

instantaneous clone population size. At the instant that the first such
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promotion event occurs the clone colony (if one exists, i.e. has been initiated)

will be said to have developed a tumor, at least in informal layman's terms.

NoL*e that all original cells in an organ are assumed to be independently

exposed to initiation and, thereafter, to promotion. Therefore all organ cells

and subsequent clones, if any, must survive from initiation to the end of the

observation period without being promoted in order for the organ to survive

throughout.

The probabilistic mechanism described has been used to obtain a formula

for the survival probability for an organ for any observation time t. See

Appendix A for the formula and its derivation. Similar formulas have- been

derived also by Moolgavkar and others. Our formula provides the basis for

statistically estimating from pathology data, (combinations of) the parameters:

A, the initiation rate; #, the promotion rate; and A3 and 5, the clonal birth and

death rates. Such estimates can, in turn, be used to estimate the probability of

cell, and organ, survival for any time period. We also supply an alternative

model, based on diffusion theory (use of mathematical Brownian motion) that

adds certain intuitive features. Appendix B contains a discussion of maximum

likelihood estimation from data so as to specify parameters of a preliminary

model. Appendix C uses the preliminary statistical model of Appendix B to

dcscribe a particular data set. Further work is required to obtain additional

statistical models and procedures to analyze other experimental data.

(d) Extensions to the Model: Extra-variation of Parameters

The above model, and the consequences thereof in the form of a survival

probability function, are appealing since they have some plausible biologic il

basis and represent a form of variability from organ to organ outcomes
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(malignancy evident, or not) that is anticipated. On the other hand, variability

between organs in different subjects (e.g. fish) is not well represented.

Different, but superficially identical, biological entities, be they fish, rats, or

humans, can be expected to have some differences; specifically these may be

between the effective parameters 1, , u3 and 3. If the above are estimated from

data without recognizing the possibility of extra-variation, biased results will be

obtained. See Harris (1990) for biological explanations of inter-organ (subject)

variability.

There are two simple and preliminary ways of dealing with the above

problem. One is by attempting to "explain" parameter variation by

representing it as a function of some causal variable, such as the age, sex,

weight, etc., of the host subject. The technique could be some form of

regression analysis; methods of McCullagh and Nelder (1983) suggest

themselves. A description of a preliminary computational procedure to

estimate model parameters is described in Appe:,dix B. This procedure is used

to estimate model parameters for a particular data set in Appendix C. A second

approach is to assume that the variability between individual host organs can

be represented by treating some or all of the parameters as random variables

with their own distributions. A typical survival function is then obtained by

mixing: the parametric survival function of Appendix A is "simply"

randomized according to the (joint) distribution of the parameters. In principle

it is desirable to recognize both sources of variability between individuals,

adjusting for known sources of variation by a regression technique where

possible, but recognizing the "unexplainable" variation by use of a mixing
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technique. The latter has been carried out to a limited extent, see Gaver and

Jacobs (1992).

(e) Recommendation

Further work, both theoretical and applied, is required to put the above

ideas for characterizing and explaining extra variability into practice. It is

proposed that this work, plus effort to characterize the errors or uncertainties of

survival probabilities, be carried out in a follow-on to the current project.

3. CONTACT WITH RELATED RESEARCHERS AND INSTITUTIONS

We have established information-transfer and possible collaborative

relations with several other establishments having related objectives. These

are

(a) The National Institute of Environmental Health Sciences (NIEHS),
Research Triangle, NOCAR

Specific contacts have been made with David Hoel, Joseph Hasen:an, and

Chris Portier. They have forwarded papers. Hoel has invited me to spend

some time there, which I plan to do in the spring of FY92.

(P.) RAND Corp., Santa Monica, CA,

A group interested in environmental epidemiology. Among them are

Naihua Duan and Sandy Geschwind.

(c) EPA, Washington, DC

A Group interested in risk analysis. Dr. Herman Gibb.

(d) Naval Medical Research Institute, Toxicology Detachment, Wright-
Patterson AFB, Dayton, OH.

Particularly Dr. Robert Carpenter.

6



We also explore contacts with Dr. Alice Whittemore, Professor of

Epidemiology and Biostatistics at Stanford Uriv., and with Prof. Nicholas

Jewell of UC Berkeley, and elsewhere in academia.
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APPENDIX A. TWO-STAGE MODELS

In this appendix we present two models for the distribution of time until a

normal cell becomes promoted. The first model is a birth-and-death model.

The second model is a diffusion model.

1. A BIRTH-AND-DEATH MODEL FOR THE TIME UNTIL A NORMAL

CELL BECOMES MALIGNANT (IS PROMOTED)

We first develop an expression for the distribution of dime until an

initiated cell or one of its descendants becomes malignant.

Assume that there is one initiated cell at time 0. Such cells divide at an

exponential rate fl, and die at an exponential rate J. Any initiated cell turns

malignant at an exponential rate M; i.e. u is the promotion rate.

(a) Time to Promotion of an Initiated Cell

Let T be the random time at which some initiated cell or its descendent

turns malignant; note that T may actually be infinite if the population of

initiated cell and its descendents dies out. Put

z(t) = P(T > t}.

Then simple probability arguments give the equation

z(t) =e-(P+S+)t + (3++ +++)e-( .÷a÷u)s , +T z(t-s)} ds
o #+ g+/3 +S+/u

~~ e-(5+~ +, +l +5 + +JUL

00

= e(+ +lt /3• + 6+/. 1 e-(+6• + 15e-(•+a+±')t; {e(3 +Sa)Y..(y)2dy.

0

" 030 +



(A.1)

Differentiating with respect to t and simplifying gives

d 1~t +/3& + +iI) eO+5+AI z(t)2

= /•z(t) 2 -(03- 8+ g)z(t)+ 3. (A.2)

Hence z(t) satisfies a Riccati equation with initial condition

z(O) a 1 (A.3)

The solution to (A.2) with initial condition (A.3) is

z(t) P2 -(-pi)e(--P)t (A.4)

where p1,2 are the solutions to the quadratic equation

_(1+ 3. +,U +_4 =0; (4.5)

±[C+ (5L ++*2 27
P1,2 = +9)t-(++ -4 (A.6)

Since [I ~+j 4ý] •5 (1 + both p, and P2 are positive. Further

p2 < I and

-4P2 >0.
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Hence,

If the death rate 85=0, then P. 0 and lirn P[T > 0) 0; if 3S 0, then there is no
t-4i

death of initiated cells and thus an initiated ce!l will transition to a malignant

cell in a finits time with probability 1. If 3> 0, then the initiating cells can die,
thus preventing a transition to malignancy and hence lim P(T > 0t) p2 > 0.

-t em

Nb A Model for the Time until a Normal Cell becomes Malignant (is
promoted)

Assume that each normal cell is initiated at an exponential rate At,. Let. N

be the total number of normal cells in an organ. Let S denote the first time a

normal cell transitions to a malignant ceci.

P{s 2t t}. e= L + f ;oe-'z(t ] ~s A7

where z is a given in (A.4). Assume Ao is small and put A =.1,N, a constant.

Then

P{S > t} -exP{NlInl I t- +ifz(s)ds] (A.8)

exp{-).t +A fiz(s)ds} (A.9)

=exp{X(pj - )t-A. ln[l-P2 ±(Pl)(~ 2 t} ~A-10)
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2. A DIFFUSION APPROXIMATION TO THE TIME TO PROMOTION

An alternative approach to constructing a model for time to promotion, i.e.

appearance of a tumor, is via diffusion appeoximation; see Karlin and Taylor

(1981), Chap. 15. The approach can be mathematically justified as an asymptotic

limit of a sequence of discrete-state processes by use of weak cl-avergence

theory; see Kopp-Schneider, Portier and Rippman (1991) whc have used this

methodology also and discussed the weak convergence issues. Here our

mctivation is to model biological phenomena, i.e. var"ibility, in a convenient

and flexible manner, so questions of mathematf"al rigor can be temporarily

suppressed.

Consider .n organ that at time 0 contains x cells that have just been

initiated. ThirIk of x as a real fixed positive number, not insisting that it be an

integer. Now suppose promotion is a Poissor process of rate y*, applying

independently to each of the x cells. This impli i that no promotion occurs in

time (t, t+h) with prcbability e~a'- 1-0ih + o(h) as h--0. The diffusion

approximation to the growth/death of the entire initiated cell population, of

size A(0) - x initially, changes to

1(h) * x + er

at time h (h small after initiation), with

ex Normally distriouted with mean V(r)h + o(h), and variance a'(x)h0+(h)

Example. A diffusion approximation to the previous birth-death model would

naturally equate the mean and variance of change in a smell time interval of

length h to v(x)h and a7(x)h respectively; these turn out to be

t x(/)h 3-3()-)h (A.l1)
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and

o2 (x)h = x(9+o)h (A.12)

and the birth-death model's increment distribution (net births over deaths) by a

normal variable with the matched moments.

The parameters L(x) and a2(x) are known as, respectively,

vtx): infinitesimal mean, or drift;

cý): infinitesimal variance, or diffusion coefficient.

The v(x) parameter describes the tendency of the process to move

deterministically in a given direction during a time of length h; the a 2(x)

parameter provides a scale 'or the random variability around the mean.

Put z(t; x) for the survival probability, until tu nor appearance, given that x

cells are initially initiated:

z(t; x) - Ptr1 > t) - P(T > t 11(0) - x}.

The assumptions made initially then suggest that z satisfies the following

equation if h x 1:

. I .-JVL-,h)A 2/2,,>h

-5_; 4 r (x)h

Now as h is small then y will also assume small values with appreciable

probability so replace z(t-h, x+y) by its Taylor series expansion

haz a , 2 a2:
-(t- h,X + y) - z(tx) - - + , + Y -a

at x 2a

Then the integral can be performed and

12



z(t;x) =(1-;1 x h) x)-h + (x)h+ a2z + o(h)hat ax 2 aX2  )

Now collect up terms of order h, cancel them and get the following partial

differential equation for z:

azM-= ~) 2 X ~ (A.141
at ax 2 ax2

as h -- 0.

Special Case. The diffusion approximation appropriate for modeling an

exponentially growing (or dying) population puts

tXx) - x v, C7(x) - x.c. (A.15)

Now by analogy with the previous model argue that in order for the initiated

colony to survive all must survive, so the form of the solution to (A.14) with

coefficients of the form (A.15) should be

Z(t;x) = "()

Substituting this into (A.14), we get

d 4, X;x 0 X4)+ 2 X0.
-dte e*_ x V+W e . (A.16)

Cancellation of xego yields a Ricatti equation once again:

do7dep _o'"2 A.

dt 2

with P(O) - 1.

Once again an explicit solution is available:

13



l-(t) = u2+2 (A.18)

(I 42 - I -ýJeP +2ua 2IIUJ}

where

41,2_V2_ 2g ~~±~ + aw (A.19)

Thus, if at time 0 there is one initiated cell, then the probability that this

cell or one of its descendants is not promoted by time t is

P{T > t} = exp{p(t)} (A.20)

where q<t) is given by (A.18). This expression is to be compared to the birth-

and-death model expression (A 4). Note that as t-.-+, P(T > t0 - exp(42), which

is always positive. A further argument similar to that in (A.7) is needed to

obtain the distribution of time until a normal cell is Initiated and promoted.

Further discussion of the relationship between these models will be given

elsewhere.

14



APPENDIX B. MODEL FITTING METHODS AND QUANTIFYING BIOASSAY

SURVIVAL

1L PRELIMINARY STATISTICAL MODELS AND METI-, LiDS FOR

ANALYZING BIOASSAY DATA

Suppose N organisms (for example fish) are used in an experiment.

Groups of these organisms may be exposed to different treatments. Let Ti be

the random time until organism i develops a particular symptom, e.g., cystic

degeneration. Let Xi - (Xi1, Xiz, .... Xi) be covariates which (possibly) influence

Tj; the Xi could be levels of substances having possible toxic effects to which

the organisms are exposed. Let G(t; x) - P(T1 •t I X- - xi}. We will assume that

the organisms develop symptoms independently of each other. In this initial

model, the symptom is either present or not.

Suppose that n, organisms are sacrificed at time t, with tj < t2 < ... < t.

We will label the organisms so that organisms I through ni are sacrificed at

time tj; organisms n1 +l, ..., n,÷n 2 are sacrificed at time t2 ; etc. Let si 1 if

organism i exhibits the symptom when it is examined. Under the assumption

of independence, the likelihood function is

K nk

L = ri fJ'k1s, 1 ~kx 4)+-snl.iGt~~l~ (B.1)
k-1 i-1

where no - 0 and G(t; x) 1--G(t; x). The likelihood functions form the basis

for estimation of parameters in the distributions that model survival times, i.e.

C.
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Example (Simple Binomial Model). If there are no covariates, then (B.1)

becomes

KL-rj rIbeco=e A J(;)GN tk ký(tk)nk fk (B.2)

where fk is the number of the nk organisms exhibiting the symptom.

A procedure to estimate the parameters of the distribution G for the simple

binomial model is as follows.

2. MAXIMUM LIKELIHOOD ESTIMATION IN THE SIMPLE BINOMIAL

MODEL

(a) likelihood and Parameter Estimation Formulas

Assume the distribution of the time to appearance of a symptom, G, is a

function of the parameters a1 , j = 1, .... I. In this section we discuss maximum

likelihood estimation of a, for the simple binomial model. Presumably the n.

subjects examined at time t. k = 1, 2, ... , K have all been subjected to a common

dosage of a potential toxin. The purpose of the present analysis is to predict

survival probabilities as they depend on such dosage. The log-likelihood

function for the simple binomial model is

K

J= Jln(Rk) +Akin G(tk;o) + (nk -fk)inGZTk; a) (B.3)
k=1

where cc (c ,..., a1). Differentiating, we obtain

Ga ,tk; a)+ :;t); a)aa1  k.lG(tk; a) aa1  Gn-k N; a) .Gk a)]

16



7

=K fk[1-GCtk;a)1-(nk -fk)GI(tk;a) LGtl
S G(tk;•a•G(tk;a) -aaj-G(t; a)

K - nkG(tk;a) Ga (B.4)

Since ErfkI =f kG t;a

a Gt;a)aGt;)
~[a 2  1 K aGjtk an)Gtk)

ýaa. k=1 G(tk; C)G(tk;ca)(B5

Thus a Newton procedure for finding the maximum likelihood estimates of

(a,; j - 1, ... , 11 would iteratively solve the system of linear equations

I(X)+a a (B.6)
0a a

where ao =a 1 ,..., a1" Such iterative procedures can be programmed for a

digital comp ter, and lhe resulting parameter values can be used to compute

predictions for survival probabilities, or risk, as the latter depend upon the

parameters of such models as described in Appendix A. An illustration is

given in Appendix C.

17



APPENDIX C. A PRELIMINARY ANALYSIS OF DATA

We present and discuss a specific data analysis and uncertainty assessment

utilizing the methodology described above. Note that this analysis is less

comprehensive than that potentially possible.

The data analyzed are taken from the U.S. Army Biomedical Research and

Development Laboratory Study N: Utilization of Fish to Evaluate Carcinogenic

Potential of Tricholoethylene Contamined Groundwater-Pathology Report,

Vol. 1 of 3. The report presents results of a "histopathologic examination of

tissues from fish of the species Oryzias latipes (Japanese medaka) which was

performed to evaluate the carcinogenic potential of trichloroethylene (TCE) in

groundwater. Fish exposed to groundwater with various concentrations of

TCE were either pre-treated or not pre-treated with 10 mg/I diethylnitrosamine

(DEN) in water for 48 hours at 17 days post hatch. Exposures were begun in the

biomonitoring trailer on the sixth day after treatment with DEN." After three

months of exposure 25 fish in each treatment group were sacrificed. (interim

sacrifice). The remaining fish in each of the treatment regimes were divided

into two groups "one group of fish, designated the chronic fish, continued to be

exposed to various concentrations of TCE in the water for an additional three

months." The chronic fish were sacrificed at 6 months into the study. It is the

data on these fish that we will consider.

The data we consider are the occurrence or nonoccurrence of cystic

degeneration (CD) in the chronic fish in each treatment group. The data are

presented in Table 1.

18



TABLE 1.

# fish with symptom/# fish
killed

Sacrifice Time
Group DEN no DEN %TCE 3 months 6 months

1 X 0 6/25 4/15
3 X 25 4/25 5/13
5 X 50 2/25 4/14
7 X 100 _ 3/25 3/14
2 X 0 11/25 6/12
4 X 25 4/25 8/13
6 X 50 6/25 5/12
8 X 100 7/25 3/8

The statistical model used is the simple binomial model of Appendix B

with exponential distribution

G(t) -I-exp(-e2t).

The parameter -y is the natural logarithm of mean time to exhibit symptoms.

The Newton procedure described in Appendix B was used to estimate the

parameter y numerically for the data in each group. Each group contains two

data points, one for three months and one for six months. The maximum

likelihood estimates I/ appear in Table 2.

TABLE 2. MAXIMUM LIKELIHOOD ESTIMATES OF MEAN TIME TO

EXGHRBIT CD

Group DEN no DEN %TCE -e- Estimated Mean

Time to CD
I X 0 2.66 14.3
3 X 25 2.68 14.5
5 X 50 3.32 23.8
7 X 100 3.28 24.4
2 X 3 1.85 6.4
4 X 25 2.31 10.0
6 X 50 2.40 11.0
8 X 100 2.32 10.2

19



The last column of Table 2 shows that the estimates of the mean time to CD for

those groups in which the fish were pretreated with DEN are always

considerably smaller than those for fish that were not pretreated. The

estimates are based on use of a very simple model, the exponential. Note,

however, that the two-stage clonal expansion model of survival probability

described in Appendix A has approximate exponential behavior in the right

tail, so choice of the exponential for data analysis is not inconsistent with that

theory.

There has been no opportunity to assess possible between-fish variability in

susceptibility to incur different possible toxin effects. This is for the future.

VARIABILITY OR UNCERTAINTY ASSESSMENT

In order to assess uncertainty in the estimate of y and the mean time to CD

appearance the technique of bootstrapping was used, cf. Efron and Tibshirani

[1986]. This is a re-sampling methodology that is of wide and useful

application. For each group treatment, experimental data was simulated using

the estimated model using the )-estimate in Table 2; that is, for each bootstrap

replication for each group of fish, two independent binomial random variables

were simulated; one with 25 trials and probability of success 1-exp(-3e-4 ), and

the other having probability of success 1-exp(--6e-Y} with the number of trials

equal to the number of fish in the chronic population sacrificed at six months.

Any fish that have presumably died (or vanished) were simply ignored; note

that these could have been removed because they very early reached a dose-

related fatal endpoint, and hence the treatment of these is a potential source of

bias. These simulated data were then used to obtain one bootstrap estimate of

y. For each treatment group 500 independent bootstrap estimates of ywere

obtained.

20



Figure 1 presents boxplots of the bootstrap estimates of -y for each

treatment group; recall that -y corresponds to the logarithm of the mear. time

to symptom development.

The following is taken from the documentation of GRAFSTAT, a

developmental product of IBM which the Naval Postgraduate School is using

under a test agreement with IBM. "The box portion of the plot extends from

the lower quartile of the sample to the upper quartile. (The lower quartile is

the point for which one quarter of the sample lies below and three quarters

above. The upper quartile is analogous.) The line across the center of the box

marks the median. The circle in the box represents the mean.

The distance from the lower to the upper quartile is called the interquartile

distance, and it will be represented by Q. The points at the ends of the two lines

(called whiskers) are the smallest and largest points, respectively, within 1.3Q

of the quantiles. The points beyond the whiskers arn outlying values."

The boxplots for groups 2, 4, 6 and 8 (those groups pretreated with DEN)

generally lie below those for groups 1, 3, 5, and 7 respectively (those groups not

pretreated with DEN). Thus treatment with DEN tends to shorten the mean

time to symptom development, even accounting for sampling errors in the

estimates. The bootstrapping results tend to strengthen inference concerning

the effect of DEN treatment, and they provide perspective on the sensitivity of

the experimental procedures, e.g., how well dosage effects can be distinguished.

Comparison of the width of the boxes of groups 2, 4, 6, and 8 with those of 1, 3,

5, and 7 suggests that pretreatment with DEN tends to decrease the amount of

variability of the 7-estimates (as well as reducing those estimates). The

variability of the estimate of -/precludes any strong conclusions concerning the

effect of the different dosages of TCE on corresponding mean times to symptom
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development. The design of the experiment needs to be modified to increase

the experiment's sensitivity if higher sensitivity is required.
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